

[Anusuya, 6(5): May 2019] DOI- 10.5281/zenodo.3229432

ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES CUBE DIFFERENCE LABELING OF SOME SPECIAL GRAPH FAMILIES

R. Anusuya

Department of Mathematics Thiruvalluvar College, Papanasam - 627 425

ABSTRACT

A new labeling and a new graph called cube difference labeling and the cube difference is defined. Let G be a (p,q) graph. G is said to have a cube difference labeling if there exists injection $f:V(G) \longrightarrow \{0,1,2,\ldots,p-1\}$ such that the edge set of G has assigned a weight defined by the absolute cube difference of its end vertices, the resulting weights are distinct. A graph which admits cube difference labeling is called cube difference graph. The cube difference labeling for some special graph families like **Pan graph**, **Lollipop graph**, **Barbell graph**, **Sunlet graph**, **Sparkler graph**, **Fan graph**, **Triangular Snake Graph**, **Z**-P_n graph are discussed in this paper.

Keywords: Cube difference labeling, Cube difference graph.

I. INTRODUCTION

All graph in this paper are simple finite undirected and nontrivial graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with vertex set V and the edge set E. A function f is a cube difference labeling of a graph G of size n if f is an injection from V(G) to the set $\{0,1,2,\ldots,p-1\}$ such that, when each edge uv of G has assigned the weight $|[f(u)]^3-[f(v)]^3|$, the resulting weights are distinct. The notion of square difference labeling was introduced by J.Shima [4]-[6]. Graph labeling can also be applied in areas such as communication network, mobile telecommunications, and medical field. A dynamic survey on graph labeling is regularly updated by Gallian [2] and it is published by Electronic Journal of Combinatory. The notation and terminology used in this paper are taken from [1].

Definition 1.1: Let G = (V(G), E(G)) be a graph. G is said to be cube difference labeling if there exist a injection $f:V(G) \longrightarrow \{0,1,2,\ldots,p-1\}$ such that the induced function $f^*:E(G) \longrightarrow N$ given by $f^*(uv) = |[f(u)]^3 - [f(v)]^3|$ is injection.

Definition 1.2: A graph which satisfies the cube difference labeling is called the cube difference graph.

Definition 1.3: The Pan graph is the graph obtained by joining a cycle graph C_n to a singleton graph K_1 with a bridge. It is denoted by P_n .

Definition 1.4: The Lollipop graph is the graph obtained by a Complete graph K_m to a path P_n with a bridge. It is denoted by $L_{m,n}$.

Definition 1.5: The Barbell graph is obtained by connecting two copies of K_n by a bridge. It is denoted by **B**_n.

Definition 1.6: The Sunlet graph S_n is a graph obtained from a cycle C_n attached a pendent edge at each vertex of the n-cycle. It has 2n vertices and 2n edges.

Definition 1.7: The Sparkler graph P_m^{+n} is a graph obtained from a path P_m and appending n edges to an end point. It has m+n vertices and m+n-1 edges.

Definition 1.8: A fan graph obtained by joining all the vertices of a path P_n to a further vertex, called the Centre. It is denoted by F_n . It has n+1 vertices and 2n-1 edges.

Definition 1.9: The Triangular Snake T_n is obtained the path P_n by replace each of the path by a triangle. It has 2n+1 vertices and 3n edges.

462

[Anusuya, 6(5): May 2019]

DOI- 10.5281/zenodo.3229432

Definition 1.10: In a pair path P_n , ith vertex of a path P_1 is joined with i+1th vertex of a path P_2 . It is denoted by **Z**-**P**_n.

ISSN 2348 - 8034

Impact Factor- 5.070

II. MAIN RESULT

Theorem: 2.1

The Pan graph P_n admits a Cube difference labeling.

Proof:

Let \mathbf{P}_n be a Pan graph. Let |V(G)| = n+1 and |E(G)| = n+1. The mapping $\mathbf{f:}V(G) \longrightarrow \{0,1,2,\dots,n-1\}$ is defined by f(u) = 0 and $f(u_i) = i+2$, $0 \le i \le n-1$ and the induced function, $f^*:E(G) \longrightarrow N$ is defined by and here the edge sets are $E_1 = \{u_i u_{i+1} / 0 \le i \le n-1\}$ and $E_2 = \{uu_i / i=1\}$ and the edge labeling are, (i) $f^*(u_i u_{i+1}) = \bigcup_{i=0}^{n-1} |(f(u_i))^3 - (f(u_{i+1}))^3|$

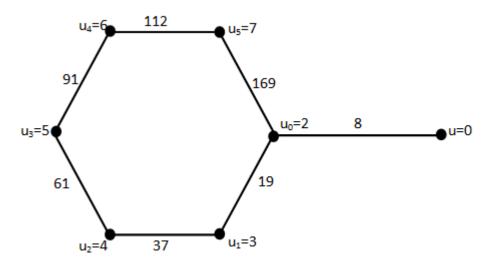
$$= \bigcup_{i=0}^{n-1} |(i+1)^3 - (i+3)^3|$$

= $\bigcup_{i=0}^{n-1} (3i^2 + 15i + 19)$
= {19,37,61,....}

(ii) $f^*(uu_0) = (i+2)^3$, i=0=8.

Here all the edges are distinct. Hence, the Pan graph Pn admits a Cube difference labeling.

Example 2.2: The Pan graph **P**₆ is a cube difference graph.



Theorem: 2.3

The Lollipop graph $L_{m,n}$ admits a Cube difference labeling.

Proof:

Let $\mathbf{L}_{m,n}$ be a Lollipop graph. Let |V(G)| = m+n and |E(G)| = m+n+2. The mapping $\mathbf{f}: V(G) \longrightarrow \{0, 1, 2, \dots, n-1\}$ is defined by $f(u_i) = i, 0 \le i \le n-1$ and $f(v_i) = i+1, n-1 \le i \le 2(m-1)$ the induced function, $f^*: E(G) \longrightarrow N$ is defined by and here the edge sets are $E_1 = \{u_i u_{i+1} / 0 \le i \le n-1\}$ and $E_2 = \{v_i v_{i+1} / n \le i \le 2(m-1)\}$, $E_3 = \{v_i v_{i+2} / i=3\}$ and $E_4 = \{v_{i+2} v_{i+4} / i=2\}$ and the edge labeling are,

RESEARCHERID

[Anusuya, 6(5): May 2019] DOI- 10.5281/zenodo.3229432

(i)
$$f^{*}(u_{i}u_{i+1}) = \bigcup_{i=0}^{n-1} |(f(u_{i}))^{3} - (f(u_{i+1}))^{3}|$$
$$= \bigcup_{i=0}^{n-1} |(i)^{3} - (i+1)^{3}|$$
$$= \bigcup_{i=0}^{n-1} (3i^{2} + 3i + 1) =$$
$$= \{1, 7\}.$$
(ii)
$$f^{*}(v_{i}v_{i+1}) = \bigcup_{i=1}^{m} |(f(v_{i}))^{3} - (f(v_{i+1}))^{3}|$$
$$= \bigcup_{i=1}^{m} (3i^{2} + 3i + 7).$$
$$= \{19, 37, 61, 91, 112\}.$$

(iii)
$$f^*(v_iv_{i+2}) = |(f(v_i))^3 - (f(v_{i+2}))^3|$$

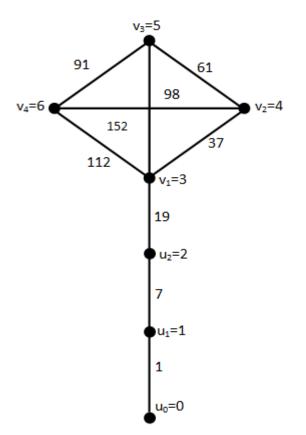
= $|(i)^3 - (i+2)^3|$
= $6i^2 + 24i + 26.$, $i=2$
= 98

(iv)
$$f^*(v_{i+1}v_{i+3}) = |(f(v_{i+1}))^3 - (f(v_{i+3}))^3|$$

= $|(i+2)^3 - (i+4)^3|$
= $6i^2 + 36i + 56.$
=152.

Here all the edges are distinct. Hence, the Lollipop graph $L_{m,n}$ admits a Cube difference labeling.

Example 2.4: L_{4,3}



Theorem: 2.5

The Barbell graph B_n admits a Cube difference labeling.

Proof:

Let \mathbf{B}_n be the Barbell graph. Let |V(G)|=2n and |E(G)|=2n+1.

.

464

ISSN 2348 - 8034 Impact Factor- 5.070

[Anusuya, 6(5): May 2019]

DOI-10.5281/zenodo.3229432

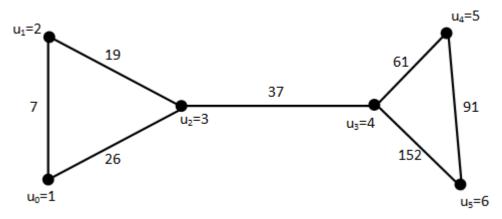
ISSN 2348 - 8034 Impact Factor- 5.070

The mapping $f:V(G) \longrightarrow \{0,1,2,\ldots,2n-1\}$ is defined by $f(u_i)=i+1$, $0 \le i \le 2n-1$. and induced function $f^*:E(G) \longrightarrow N$ is defined by, and here the sets are,

 $E_1 = \{u_i u_{i+1} / 0 \le i \le n-1\}$ and $E_2 = \{u_i u_{i+2} / i=1\}$ and $E_3 = \{u_{i+2} u_{i+4} / i=2\}$.

Hence all the edges are distinct. Hence the graph B_n admits a Cube difference labeling.

Example2.6: The Barbell graph **B**₃ is a Cube difference graph



Theorem: 2.7

The Sunlet graph S_n admits a Cube difference labeling.

Proof:

Let S_n be a Sunlet graph. Let |V(G)|=2n and |E(G)|=2n. The mapping $f:V(G) \longrightarrow \{0,1,2,\ldots,2n-1\}$ is defined by $f(u_i)=i$, $0 \le i \le 2n-1$ and the induced function $f^*:E(G) \longrightarrow N$ is defined by, and here the sets are, $E_1=\{u_iu_{i+1}/0\le i\le n-1\}$ and $E_2=\{u_{n-1}u_0\}$ $E_3=\{u_iu_{n+1}/0\le n+i\le 2n-1\}$ and the edge labeling are,

(i)
$$f^*(u_iu_{i+1}) = \bigcup_{i=0}^{n-1} |(f(u_i))^3 - (f(u_{i+1}))^3|$$

 $= \bigcup_{i=0}^{n-1} (3i^2 + 3i + 1)$
 $= \{1,7,19,37\}$
(ii) $f^*(u_{n-1}u_0) = (n-1)^3$

$$(u_{n-1}u_0) = (u-1)$$

=64.

iii)
$$f^*(u_i u_{n+i}) = \bigcup_{i=0}^{n-1} |(f(u_i))^3 - (f(u_{n+i}))^3|$$

= $\bigcup_{i=0}^{n-1} (15i^2 + 75i + 125)$
= {125,215,335,485,665}

Here all the edges are distinct. Hence the Sunlet graph S_n admits a Cube difference labeling.

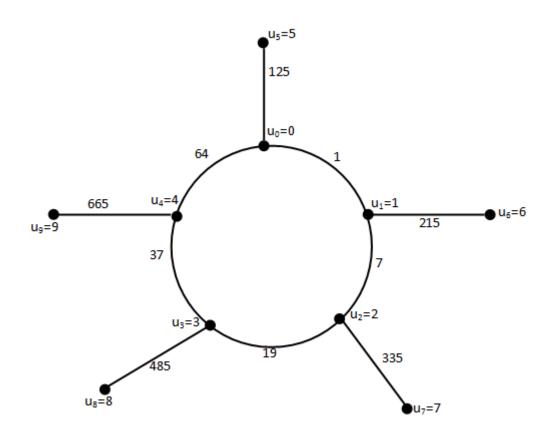
(

(C)Global Journal Of Engineering Science And Researches

[Anusuya, 6(5): May 2019] DOI- 10.5281/zenodo.3229432

Example 2.8: The Sunlet graph **S**₅ is a Cube difference graph.

ISSN 2348 - 8034 Impact Factor- 5.070



Theorem: 2.9

A Sparkler graph P_m^{+n} admits a Cube difference labeling.

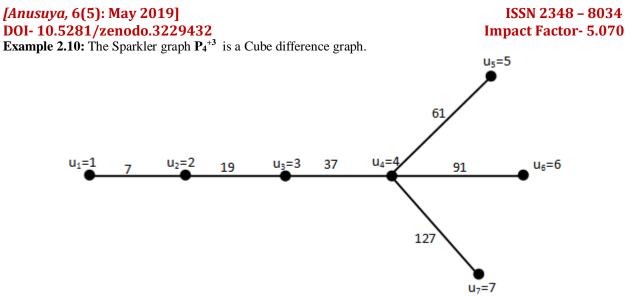
Proof:

Let $\mathbf{P}_{\mathbf{m}}^{+\mathbf{n}}$ be a Sparkler graph. Let |v(G)|=m+n and |E(G)|=m+n-1. The mapping $\mathbf{f}: \mathbf{V}(\mathbf{G}) \longrightarrow \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \dots, \mathbf{n-1}\}$ is defined by $f(u_i)=i$, $1 \le i \le m$ and $f(u_j)=m+1$, $m+1 \le j \le 2n+1$, and the induced function, $f^*:E(\mathbf{G}) \longrightarrow \mathbb{N}$ is defined by, and here the sets are, $E_1=\{u_iu_{i+1}/1 \le i \le m-1\}, E_2=\{u_iv_j/i=m, m+1 \le j \le 2n+1\}$ and the edge labeling are

(i)
$$f^*(u_i u_{i+1}) = \bigcup_{i=1}^{m} |(f(u_i))^3 - (f(u_{i+1}))^3|$$

 $= \bigcup_{i=1}^{m} (3i^2 + 3i + 1)$
 $= \{7, 19, 37\}$
(ii) $f^*(u_i u_j) = |(f(u_i))^3 - (f(v_j))^3|$, $i=m \text{ and } m+1 \le j \le n$
 $= \bigcup_{i=m+1}^{2n+1} (3i^2 + 3i + 1)$
 $= \{61, 91, 127\}$

Here all the edges are distinct. Hence the Sparkler graph P_m^{+n} admits a Cube difference labeling.



Theorem: 2.11

The Fan graph \mathbf{F}_n admits a Cube difference labeling.

Proof:

Let F_n be a Fan graph. Let |V(G)|=n+1 and |E(G)|=2n-1. The mapping $f:V(G) \longrightarrow \{0,1,2,...,n-1\}$ is defined by f(u)=0 and $f(u_i)=i$, $1 \le i \le n$ and the induced function $f^*:E(G) \longrightarrow N$ is defined by, and here the sets are, $E_1=\{u_iu_{i+1}/1\le i\le n-1\}$ and $E_2=\{u_{i_1}/1\le i\le n\}$ and the edge labelings are, $f^*(u_{i_1}u_{i_2})=U^{n-1}|(f(u_i))|^3|(f(u_{i_2}))|^3|$

(i)
$$f^{*}(u_{i}u_{i+1}) = \bigcup_{i=1}^{n} |(f(u_{i}))^{3} - (f(u_{i+1}))^{3}|$$

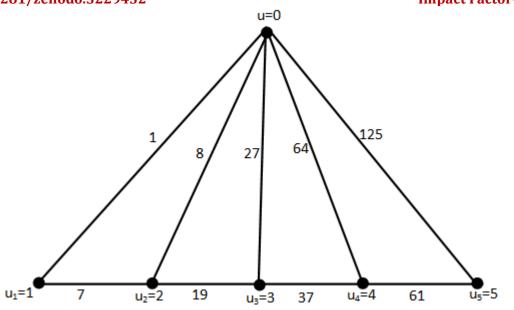
 $= \bigcup_{i=1}^{n-1} (3i^{2} + 3i + 1)$
 $= \{7, 19, 37, 61\}$
(ii) $f^{*}(uu_{i}) = \bigcup_{i=1}^{n} |(f(u))^{3} - (f(u_{i}))^{3}|$
 $= \bigcup_{i=1}^{n} (i)^{3}$
 $= \{1, 8, 27, 64, 125\}$

Here all the edges are distinct. Hence the Fan graph F_n admits a Cube difference labeling.

Example 2.12: The Fan graph **F**₅ is a Cube difference graph.

[Anusuya, 6(5): May 2019] DOI- 10.5281/zenodo.3229432

ISSN 2348 - 8034 Impact Factor- 5.070



Theorem: 2.13

A Triangular Snake graph T_n admits a Cube difference labeling.

Proof:

Let T_n be a Triangular Snake graph. Let |V(G)|=2n+1 and |E(G)|=3n. The mapping $f:V(G) \longrightarrow \{0,1,2,\ldots,2n-1\}$ is defined by $f(u_i)=2i$, $0 \le i \le n-1$ and $f(v_i)=2i+1$, $0 \le i \le n-1$ and the induced function, $f^*:E(G) \longrightarrow N$ is defined by, and here the sets are, $E_1=\{v_iv_{i+1}/0\le i \le n-1\}$, $E_2=\{u_iv_i/0\le i \le n-1\}$ and $E_3=\{u_iv_{i+1}/0\le i \le n-1\}$ and the edge labelings are,

(i)
$$\begin{aligned} f^*(v_i v_{i+1}) = & \bigcup_{i=0}^{n-1} |(f(v_i))^3 - (f(v_{i+1}))^3| \\ & = & \bigcup_{i=0}^{n-1} |(2(i+1))^3 - (2(i+1)+1))^3| \\ & = & \bigcup_{i=0}^{n-1} |(24i^2 + 48i + 26) \\ & = \{26, 98, 218, 386, 602\}. \end{aligned}$$

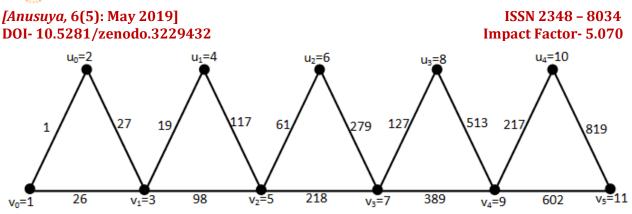
(ii)
$$\begin{aligned} f^*(u_i v_i) &= \bigcup_{i=0}^{n-1} |(f(u_i))^3 - (f(v_i))^3| \\ &= \bigcup_{i=0}^{n-1} |(2i)^3 - (2i+1)^3| \\ &= \bigcup_{i=0}^{n-1} (12i^2 + 6i + 1) \\ &= \{1, 19, 61, 127, 217\} \end{aligned}$$

(iii)
$$f^{*}(u_{i}v_{i+1}) = \bigcup_{i=0}^{n-1} |(f(u_{i}))^{3} - (f(v_{i+1}))^{3}| \\ = \bigcup_{i=0}^{n-1} (36i^{2} + 54i + 27) \\ = \{27, 117, 279, 513, 819\}$$

Here all the edges are distinct. Hence the Triangular Snake graph T_n admits a Cube difference labeling.

Example 2.14: The Triangular Snake graph T_5 is a Cube difference graph.

RESEARCHERID THOMSON REUTERS



Theorem: 2.15

The **Z**-**P**_n graph admits a Cube difference labeling.

Proof:

Let Z-P_n be a graph. Let |V(G)|=2n. The mapping $f:V(G) \longrightarrow \{0,1,2,...,2n-1\}$ is defined by $f(u_i)=2i$, $0 \le i \le n-1$ and $f(v_i)=2i+1$, $0 \le i \le n-1$ and the induced function $f^*:E(G) \longrightarrow N$ is defined by, and here the sets are,

 $E_1 = \{u_i u_{i+1} / 0 \le i \le n-1\}, E_2 = \{v_i v_{i+1} / 0 \le i \le n-1\} \text{ and } E_3 = \{v_i u_{i+1} / 0 \le i \le n-1\} \text{ and the edges labelings are } i \le n-1\}$

(i)
$$f^{*}(u_{i}u_{i+1}) = \bigcup_{i=0}^{n-1} |(f(u_{i}))^{3} - (f(u_{i+1}))^{3}|$$
$$= \bigcup_{i=0}^{n-1} (24i^{2} + 24i + 8)$$
$$= \{8, 56, 152, 296\}$$

(ii)
$$f^*(v_iv_{i+1}) = \bigcup_{i=0}^{n-1} |(f(v_i))^3 - (f(v_{i+1}))^3|$$

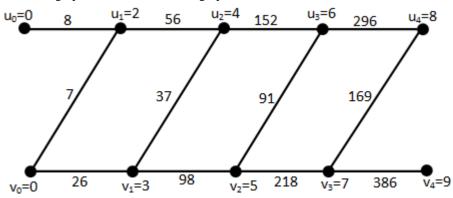
= $\bigcup_{i=0}^{n-1} (24i^2 + 48i + 26)$
= {26,98,218,386}

(iii)
$$f^*(v_i u_{i+1}) = \bigcup_{i=0}^{n-1} |(f(v_i))^3 - (f(u_{i+1}))^3|$$

 $= \bigcup_{i=0}^{n-1} (12i^2 + 18i + 7)$
 $= \{7, 37, 91, 169\}$

Here all the edges are distinct. Hence \mathbf{Z} - \mathbf{P}_n admits a Cube difference labeling.

Example 2.16: The **Z-P**⁵ graph is a Cube difference graph.



469 (C)Global Journal Of Engineering Science And Researches

[Anusuya, 6(5): May 2019] DOI- 10.5281/zenodo.3229432 III. CONCLUSION

ISSN 2348 - 8034 Impact Factor- 5.070

In this paper the Special graphs, are investigated for the Cube difference labeling. This labeling can be verified for some other graphs.

REFERENCE

- 1. Frank Harrary, Graph theory, Narosa Publishing House(2002).
- 2. JA Gallian, A dynamic survey of graph labeling. The Electronics journal of Coimbinatories, 17(2010) # DS6.
- 3. J.Shima "Square sum labeling for some middle and total graphs" International Journal of Computer Applications (0975-08887) Volume 37-No.4 January 2012.
- 4. J.Shima "Square difference labeling for some path, fan and gear graphs" International Journal of Scientific and Engineering Research volume 4, issue 3, March -2013, ISSN 2229-5518.
- 5. J.Shima "Some Special types of Square difference graphs" International Journal of Mathematics archives 3(6), 2012, 2369-2374 ISSN 2229-5046.
- 6. J.Shima "Square difference labeling for some graphs" International Journal of Computer Applications (0975-08887) Volume 44-No.4, April 2012.
- 7. J.Shima "Cube difference labeling of Some graphs" International Journal of Engineering Science and Innovative Research. Volume 2, Issue 6, November 2013, ISSN 2319-5967.

